Jump to content

Should Rockets be Interceptable


Recommended Posts

Well it is a realistic concept, V-1s were intercepted. Perhaps inconsequential, but let's think about this. I'll be the first to agree that V-2s were outside the possibilty of being intercepted. V-1s though? If your jet tech level is high enough should the intercepts be more effective? And further what level rocket tech should V-2 design kick in? Now if intercepts for V-1s is allowed do we see an abusive strategy of depleting your opponents optioned intercept resources by the use of rockets or is it a realistic tactic?

Link to comment
Share on other sites

The V-1s were always sent out on the same route, across the channel and toward London. The Brits set up rows of AA batteries and those that got past them were attacked by fighters and that was a dangerous task for the pilots involved.

From what I've read about this, if the V-1s would have been used, say against supply dumps in France, sent out at different targets and at different times, without lines of AA guns pre-sited on their routes, the overwhelming majority would have completed their trip and landed on something. As for accuracy, no, they needed pretty good target spotting if they were going to be dropped in the proximity of something like a large town, or a supply depot.

But the point is, don't debunk them due to the large numbers that were shot down over Southeast England. Those statistics are very deceiving.

Link to comment
Share on other sites

So either reduce the ability to hit, or if they will always hit, reduce the amount of damage they inflict.
Rockets already have decreasing attack strength with range. This should adequately address all those various factors of accuracy, interceptions, damage, etc.

Do we really want to make rockets any less effective, and therefore less likely to be researched by players?? There are rarely complaints about rockets being too powerful in a game, so this doesn't seem like a problem needing fixing.

Link to comment
Share on other sites

The V-1 flying bombs were intercepted or shot down by flak.

I dont remember the figures... it was either 1/3rd or 2/3rds of the V1's were intercepted and blown out of the sky or their wingtips tipped to send them to mother earth short of their planned targets.

The V-2's...no-one could stop unless the Launching crew was interdicted while they were setting up the V-2 for launch.

So my conclusion on the matter is that essentially rockets were very difficult if not neary impossible to stop or intercept or interdict!.

Link to comment
Share on other sites

The reason so many V-1s were shot down by flack is, as I said earlier, because they were always sent along exactly the same path from the Channel toward London.

The Luftwaffe was no longer a threat so ALL the flack guns were moved from the coast inland to blanket the sky each time a V-1 appeared over the Channel.

Those that made it through were gone after by fighter aircraft and despite all that some of them still made it through.

Had they been targeted against varied objectives and with varying paths a significantly higher number of V-1s would have gotten through.

So please consider that with the stats you're quoting. The stats alone are extremely misleading.

Link to comment
Share on other sites

< V1 Article cited below >

V-1 flying bomb

From Wikipedia, the free encyclopedia.

V1

V-1 flying bomb

First modern cruise missile

Description

Role Flying bomb

Crew none

Dimensions

Length 7.90 m 25 ft 11 in

Wingspan 5.37 m 17 ft 7 in

Height 1.42 m 4 ft 8 in

Wing area

Weights

Empty

Loaded 2,150 kg 4,750 lb

Powerplant

Engine 1x Argus As 14 pulsejet

Thrust 2.9 kN 660 lbf

Performance

Maximum speed 656 km/h 410 mph

Range 240 km 150 mile

Service ceiling 3,050 m 10,000 ft

Rate of Climb

Armament

Amatol warhead 830 kg 1,832 lb

The Vergeltungswaffe 1 Fi 103 / FZG-76 (V-1), known as the Flying bomb, Buzz bomb or Doodlebug, was the first modern guided missile used in wartime and the first cruise missile. Vergeltungswaffe means "reprisal weapon", and FZG is an abbreviation of Flak Ziel Gerät ("anti-aircraft aiming device"), a misleading name.

Called the Buzz bomb because of the characteristic buzzing sound of the engine, it caused considerable fear in targeted areas. People would listen for the missile approaching, but then be relieved when it could be heard overhead as that meant it had actually passed them. If the engine noise cut out, it was time to take cover, as the unpowered missile would go into its terminal dive and explode.

The V-1 was developed by the German Luftwaffe during the Second World War and was used operationally between June 1944 and March 1945. It was used to attack targets in south-eastern England and Belgium, mainly the cities of London and Antwerp. V-1s were launched from "ski-jump" launch sites along the French (Pas-de-Calais) and Dutch coasts until they were over-run by Allied forces. It was later complemented by the more sophisticated V-2 rocket.

Contents [showhide]

1 Description

2 Operation and effectiveness

3 Intelligence

4 Countermeasures

5 After the War

6 See also

7 References

[edit]

Description

The V-1 was jointly designed by Robert Lusser of the Fieseler company and Fritz Gosslau from the Argus engine works as the Fi 103. It was powered by an Argus pulse jet engine providing 2.9 kN (660 lbf) of thrust for a top speed of 630 km/h (390 mph) and a range of around 250 km (150 mile) later 400 km (250 mile). It was 7.9 m (26 ft) long, 5.3 m (17 ft) in span and weighed 2,180 kg (4,800 lb). It flew at an altitude of between 100 to 1000 m (300 to 3000 ft). It carried a 850 kg (1,870 pound) warhead. The missile was a relatively simple device with a fuselage constructed mainly from sheet metal, and could be assembled in around fifty man-hours.

The guidance system was very crude in construction but sophisticated in conception (and had a few flaws in execution). Once clear of the launching pad, an autopilot was engaged. It regulated height and speed together, using a weighted pendulum system to get fore and aft feedback linking these and the device's attitude to control its pitch (damped by a gyromagnetic compass, which it also stabilized). There was a more sophisticated interaction between yaw, roll, and other sensors: a gyromagnetic compass (set by swinging in a hangar before launch) gave feedback to control each of pitch and roll, but it was angled away from the horizontal so that controlling these degrees of freedom interacted (the gyroscope stayed trued up by feedback from the magnetic field, and from the fore and aft pendulum mentioned before). This interaction meant that rudder control was sufficient without any separate banking mechanism. On reaching the target, the desired altitude was reset to be negative; this should have led to a power dive, but the steep descent caused the fuel to run away from the pipes and so the power cut out. As there was a belly fuse as well as a nose fuse, there was still usually an explosion, although not always with the device buried deep enough to increase the effect of the blast.

[edit]

Operation and effectiveness

The first test flight of the wonder weapon V-1 was in late 1941 or early 1942 at Peenemünde. Early guidance and stabilization problems were finally resolved by a daring test flight by Hanna Reitsch, in a V-1 modified for manned operation. The data she brought back after fighting the unwieldy V-1 down to a successful landing enabled the engineers to devise the stabilization system described above.

Final dive of a V-1 over LondonThe first offensive launch was from June 12 to June 13, 1944. The Allies had previously organized a heavy series of air attacks on the launch sites (beginning in December 1943) and now also attacked the V-1s in flight (see Countermeasures below). Due to a combination of defensive measures, mechanical unreliability and guidance errors, only a quarter successfully hit their targets.

Once the Allies had captured or destroyed the sites that were the principal launch points V-1s aimed at England, the Germans switched to missile launches aimed at strategic points in the Low Countries, primarily the port of Antwerp.

Although most V-1s were launched from static sites on land, from July 1944 to January 1945 the Luftwaffe launched a number of V-1s from Heinkel He 111 aircraft flying over the North Sea. This would also have been the launch method for the proposed piloted version of the weapon, and is how the very earliest experimental versions of the V-1 were tested. Late in the war, it was hoped to use the Arado Ar 234 jet bomber to deploy V-1s, either by towing them aloft, or by launching them from a "piggy back" position atop the aircraft. Neither Ar 234 concept was employed before the end of the war.

Almost 30,000 V-1s were manufactured. Approximately 10,000 were fired at England up to March 29, 1945. Of these, about 7,000 were "hits" in the sense that they landed somewhere in England. A little more than half of those (3,876) landed in the Greater London area.

An almost equal number were shot down or intercepted by barrage balloons. When the V-1 raids began, the only effective defense was interception by a handful of very high performance fighter aircraft, in particular the Hawker Tempest.

In the London area, roughly 5,500 people died as a result of V-1 attacks, with some 16,000 more people injured.

[edit]

Intelligence

The codename Flak Ziel Gerät 76, was somewhat successful in disguising the true nature of this device, and it was some time before references to FZG 76 were tied to the V83 pilotless aircraft (an experimental V-1) which had crashed on Bornholm in the Baltic, and to reports from agents of a flying bomb capable of being used against London. Initially British experts were skeptical of the V-1 because they had considered only solid fuel rockets as a means of propulsion, which put the stated range of 130 miles (209 km) out of question. However when other types of engine were considered they relented, and by the time German scientists had achieved the needed accuracy for the deployment of the V-1 as a weapon British intelligence had a very accurate characterisation of it.

A deception concerning the V-1 was played on the Germans using double agents. M.I.5 arranged for these agents to provide Germany with damage reports for the June 1944 V-1 attacks which implied that on average the bombs were travelling too far, while not contradicting the evidence presumed to be available to German planners from photographic reconnaissance of London. In fact the bombs had been seeded with radio-transmitting samples to confirm their range, but the results from these samples were ignored in favour of the false eye-witness accounts, and many lives may have been saved by the resulting tendency of future V-1 bombs to fall short of built up areas.

[edit]

Countermeasures

The British defence against the V-1 was codenamed Operation Diver. Anti-aircraft guns were redeployed in several movements: first in mid-June 1944 from positions on the North Downs to the south coast of England; then a cordon closing the Thames Estuary to attacks from the east. In September 1944 a new linear defence line was formed on the coast of East Anglia, and finally in December there was a further layout along the Linconshire-Yorkshire coast. The deployments were prompted by the ever-changing approach tracks of the missiles which were in turn influenced by the Allies' advance through Europe.

Anti-aircraft gunners found that such small, fast-moving targets were difficult to hit. At first, it took, on average, 2500 shells to bring down a single V-1. The average altitude of the V-1, between 2,000 and 3,000 feet, was in a narrow band between the optimum engagement heights for light and heavy anti-aircraft weapons. These low heights defeated the rate of traverse of the standard British 3.7 inch mobile gun, and static gun installations with faster traverses had to be built at great cost.

Barrage balloons were also deployed against the missiles, but the leading edges of the V-1's wings were equipped with balloon cable cutters and fewer than 300 V-1s are known to have been destroyed by hitting cable.

Fighter defences had also been mobilized as part of Operation Diver. Most fighter aircraft were too slow to catch a V-1 unless they had a useful height advantage. Even when intercepted, the V-1 was difficult to bring down. Machine gun bullets had little effect on the sheet steel structure, and 20 mm cannon shells had a shorter range, which meant that detonating the warhead could destroy the intercepting fighter as well.

When the attacks began in mid-June of 1944 there were fewer than 30 Tempests in 150 Wing to defend against them. Few other aircraft had the low altitude performance to be effective. Initial attempts to intercept V-1s were often unsuccessful but interdiction techniques were rapidly developed. (These included the hair-raising but effective method of using the airflow over an interceptor's wing to raise one wing of the Doodlebug, by sliding the interceptor's wingtip under the V-1's wing and bringing it to within six inches of the lower surface. Done properly, the airflow would tip the V-1's wing up, overriding the buzz bomb's gyros and sending it into an out of control dive. At least three V-1s were destroyed this way.)

The Tempest wing was built up to over 100 aircraft by September; Griffon-engined Spitfire XIVs and Mustangs were polished and tuned to make them almost fast enough, and during the short summer nights the Tempests shared defensive duty with Mosquitoes. Specially modified P-47 Thunderbolts (P-47Ms) with half their fuel tanks, half their 0.5 in (12.7 mm) machine guns, all external fittings and all their armor plate removed were also pressed into service against the V-1 menace. (There was no need for radar—at night the V-1's engine could be seen from 16 km (10 mile) or more away.)

In daylight, V-1 chases were chaotic and often unsuccessful until a special defence zone between London and the coast was declared in which only the fastest fighters were permitted. Between June and mid-August 1944, the handful of Tempests shot down 638 flying bombs. (One Tempest pilot, Joseph Berry, downed fifty-nine V-1s, another 44, and Wing Commander Beaumont destroyed 31.) Next most successful was the Mosquito (428), Spitfire XIV (303), and Mustang, (232). All other types combined added 158. The still-experimental jet-powered Gloster Meteor, which was rushed half-ready into service to fight the V-1s, had ample speed but suffered from a readily jammed cannon and accounted for only 13.

By mid-August 1944, the threat was all but overcome—not by aircraft, but by the sudden arrival of two enormously effective electronic aids for anti-aircraft guns, both developed in the USA by the Rad Lab: radar-based automatic gunlaying, and above all, the proximity fuse. Both of these had been requested by AA Command and arrived in numbers, starting in June 1944, just as the guns reached their free-firing positions on the coast.

Seventeen per cent of all flying bombs entering the coastal 'gun belt' were destroyed by guns in the first week on the coast. This kill rate rose week on week to reach 60 per cent by 23 August and 74 per cent in the last week of the month, when on one extraordinary day 82 per cent of all targets available to the guns fell. The kill rate increased from one V-1 for every 2500 shells fired to one for every hundred.

[edit]

After the War

After the war, the armed forces of both the United States and the Soviet Union experimented with the V-1 in an assortment of scenarios. The most successful was a U.S. Navy experiment to mount V-1s on submarines. This was called the KGW-1 Loon, which was an adaptation of the U.S. Army's JB-2 Loon.

[edit]

See also

Flying bomb at the National Air & Space MuseumMedia Files : V-1 engine sound

Selbstopfer, the piloted version of the V-1

List of missiles

German missiles of WW2

List of World War II jet aircraft

[edit]

References

King, Benjamin; Kutta, Timothy (1998). IMPACT. The History of Germany's V-Weapons in World War II. Rockville Center, New York: Sarpedon Publishers. ISBN 1-885119-51-8.

Link to comment
Share on other sites

Retributar

Scrolling down the page to read your post, I was thinking exactly the same thing. Great coincidence! :D

Late in WWII Germany was beginning to developt smart bombs, a camera front transmitting to an operator, or a distant aircraft directing a missle it had released. There were two successful hits in the Mediteranean. The first against the Italian BB Litorio and the second against a smaller USN vessel. The U. S. quickly devised a jamming pattern that rendered these weapons useless.

At that time that was the cutting edge of this type of technology. It only advanced very slowly over the course of decades.

Link to comment
Share on other sites

bm31f.jpg

In SC the Soviets are given Level 1 Rockets, which is wrong and misleading. It confuses rockets in the sense of the V weapons which are part of rocketry, with the rack rockets, which are part of artillery.

V1s can be intercepted, but in WWII terms it depended upon having the ground below blanketed with AA guns and behind that some very brave fighter pilots willing to risk their own lives for the sake of destroying a tank of fuel and explovives.

AtomicCannon.gif

The distinction between artillery and rockets was further blurred later when the United States made the Atomic Cannon in 1951 and during the early 80's when the Canadian cannon designer (Ball?) began designing ordinance that might have sent a projectile into space!

He was killed under suspicious circumstances after designing a super gun for Saddam Huessain that was never actually assembled as it's disguised parts (oil pipe sections) were impounded en route to Iraq. The cannon was to built against a mountainside (or large hill) and pointed at Israel with a one time only firing capability.

Link to comment
Share on other sites

Thanks Tim, appreciated.

I'm glad you expanded the subject so we could include super-artillery and artillery-rockets in the discussion.

Even if those things aren't too relevant to WWII on the scale of miles depicted, we should definitely discuss them because we can depict them in the new Scenario Editor (as I understand it, anyway).

Link to comment
Share on other sites

×
×
  • Create New...